Suggested reading

For the basis of the tableaux methods first read (Gottesman, 1998) followed by the more efficient approach described in (Aaronson and Gottesman, 2004).

The tableaux can be canonicalized (i.e. Gaussian elimination can be performed on them) in a number of different ways, and considering the different approaches provides useful insight. The following methods are implemented in this library:

For the use of these methods in error correction and the subtle overlap between the two fields consider these resources. They are also useful in defining some of the specific constraints in commutation between rows in the tableaux:

These publications describe the uniform sampling of random stabilizer states:

For circuit construction routines (for stabilizer measurements for a given code):

For quantum code construction routines:

For classical code construction routines:

For minimum distance calculation of quantum codes:

References

  • Aaronson, S. and Gottesman, D. (2004). Improved simulation of stabilizer circuits. Physical Review A 70, 052328.
  • Abbe, E.; Shpilka, A. and Ye, M. (2020). Reed–Muller codes: Theory and algorithms. IEEE Transactions on Information Theory 67, 3251–3277.
  • Anderson, J. T.; Duclos-Cianci, G. and Poulin, D. (2014). Fault-tolerant conversion between the steane and reed-muller quantum codes. Physical review letters 113, 080501.
  • Audenaert, K. M. and Plenio, M. B. (2005). Entanglement on mixed stabilizer states: normal forms and reduction procedures. New Journal of Physics 7, 170.
  • Bhatia, A. S. and Kumar, A. (2018). McEliece cryptosystem based on extended Golay code, arXiv preprint arXiv:1811.06246.
  • Bose, R. C. and Ray-Chaudhuri, D. K. (1960). Further results on error correcting binary group codes. Information and Control 3, 279–290.
  • Bose, R. C. and Ray-Chaudhuri, D. K. (1960). On a class of error correcting binary group codes. Information and control 3, 68–79.
  • Bravyi, S.; Cross, A. W.; Gambetta, J. M.; Maslov, D.; Rall, P. and Yoder, T. J. (2024). High-threshold and low-overhead fault-tolerant quantum memory. Nature 627, 778–782.
  • Bravyi, S. and Maslov, D. (2021). Hadamard-free circuits expose the structure of the Clifford group. IEEE Transactions on Information Theory 67, 4546–4563.
  • Brown, W. and Fawzi, O. (Jul 2013). Short Random Circuits Define Good Quantum Error Correcting Codes. In: 2013 IEEE International Symposium on Information Theory; pp. 346–350.
  • Cain, M.; Zhao, C.; Zhou, H.; Meister, N.; Ataides, J. P.; Jaffe, A.; Bluvstein, D. and Lukin, M. D. (2025). Correlated decoding of logical algorithms with transversal gates, arXiv:2403.03272 [quant-ph].
  • Calderbank, A. R.; Rains, E. M.; Shor, P. and Sloane, N. J. (1998). Quantum error correction via codes over GF (4). IEEE Transactions on Information Theory 44, 1369–1387.
  • Campbell, E. T.; Anwar, H. and Browne, D. E. (2012). Magic-state distillation in all prime dimensions using quantum reed-muller codes. Physical Review X 2, 041021.
  • Chao, R. and Reichardt, B. W. (2017). Quantum Error Correction with Only Two Extra Qubits. Physical review letters 121 5, 050502.
  • Cleve, R. and Gottesman, D. (1997). Efficient computations of encodings for quantum error correction. Physical Review A 56, 76.
  • Djordjevic, I. B. (2021). Quantum information processing, quantum computing, and quantum error correction: an engineering approach (Academic Press).
  • Fowler, A. G.; Mariantoni, M.; Martinis, J. M. and Cleland, A. N. (2012). Surface codes: Towards practical large-scale quantum computation. Physical Review A 86, 032324.
  • Garcia, H. J.; Markov, I. L. and Cross, A. W. (2012). Efficient inner-product algorithm for stabilizer states, arXiv preprint arXiv:1210.6646.
  • Golay, M. J. (1949). Notes on digital coding. Proc. IEEE 37, 657.
  • Goodenough, K.; Sajjad, A.; Kaur, E.; Guha, S. and Towsley, D. (2024). Bipartite entanglement of noisy stabilizer states through the lens of stabilizer codes, arXiv:2406.02427 [quant-ph].
  • Gottesman, D. (1996). Class of quantum error-correcting codes saturating the quantum Hamming bound. Physical Review A 54, 1862.
  • Gottesman, D. (1997). Stabilizer codes and quantum error correction. Ph.D. Thesis, California Institute of Technology.
  • Gottesman, D. (1998). The Heisenberg representation of quantum computers. In: International Conference on Group Theoretic Methods in Physics (Citeseer).
  • Grassl, M. (2002). Algorithmic aspects of quantum error-correcting codes. Mathematics of Quantum Computation, 223–252.
  • Grassl, M. (2011). Variations on encoding circuits for stabilizer quantum codes. In: International Conference on Coding and Cryptology (Springer); pp. 142–158.
  • Gullans, M. J.; Krastanov, S.; Huse, D. A.; Jiang, L. and Flammia, S. T. (2021). Quantum Coding with Low-Depth Random Circuits. Physical Review X 11, 031066.
  • Haah, J. (2011). Local stabilizer codes in three dimensions without string logical operators. Physical Review A?Atomic, Molecular, and Optical Physics 83, 042330.
  • Hocquenghem, A. (1959). Codes correcteurs d'erreurs. Chiffers 2, 147–156.
  • Huangfu, Q. and Hall, J. J. (2018). Parallelizing the dual revised simplex method. Mathematical Programming Computation 10, 119–142.
  • Huffman, W. C. and Pless, V. (2010). Fundamentals of error-correcting codes (Cambridge university press).
  • Kapshikar, U. and Kundu, S. (2023). On the hardness of the minimum distance problem of quantum codes. IEEE Transactions on Information Theory 69, 6293–6302.
  • Knill, E. and Laflamme, R. (1996). Concatenated quantum codes, arXiv preprint quant-ph/9608012.
  • Koenig, R. and Smolin, J. A. (2014). How to efficiently select an arbitrary Clifford group element. Journal of Mathematical Physics 55, 122202.
  • Krastanov, S.; de la Cerda, A. S. and Narang, P. (2020). Heterogeneous Multipartite Entanglement Purification for Size-Constrained Quantum Devices, arXiv preprint arXiv:2011.11640.
  • Lacroix, N.; Bourassa, A.; Heras, F. J.; Zhang, L. M.; Bausch, J.; Senior, A. W.; Edlich, T.; Shutty, N.; Sivak, V.; Bengtsson, A. and others (2024). Scaling and logic in the color code on a superconducting quantum processor, arXiv preprint arXiv:2412.14256.
  • Landahl, A. J.; Anderson, J. T. and Rice, P. R. (2011). Fault-tolerant quantum computing with color codes, arXiv:1108.5738 [quant-ph].
  • Li, Y.; Chen, X. and Fisher, M. P. (2019). Measurement-driven entanglement transition in hybrid quantum circuits. Physical Review B 100, 134306.
  • Lin, H.-K. and Pryadko, L. P. (2024). Quantum two-block group algebra codes. Physical Review A 109, 022407.
  • Lin, S. and Costello, D. (2024). Error Control Coding (Pearson).
  • Lubin, M.; Dowson, O.; Garcia, J. D.; Huchette, J.; Legat, B. and Vielma, J. P. (2023). JuMP 1.0: Recent improvements to a modeling language for mathematical optimization. Mathematical Programming Computation 15, 581–589.
  • MacKay, D. J.; Mitchison, G. and McFadden, P. L. (2004). Sparse-graph codes for quantum error correction. IEEE Transactions on Information Theory 50, 2315–2330.
  • Makhorin, A. (2008). GLPK (GNU linear programming kit), http://www. gnu. org/s/glpk/glpk. html.
  • Muller, D. E. (1954). Application of Boolean algebra to switching circuit design and to error detection. Transactions of the IRE professional group on electronic computers, 6–12.
  • Naghipour, A.; Jafarizadeh, M. A. and Shahmorad, S. (2015). Quantum stabilizer codes from Abelian and non-Abelian groups association schemes. International Journal of Quantum Information 13, 1550021.
  • Nahum, A.; Ruhman, J.; Vijay, S. and Haah, J. (2017). Quantum Entanglement Growth under Random Unitary Dynamics. Physical Review X 7, 031016.
  • Panteleev, P. and Kalachev, G. (2021). Degenerate Quantum LDPC Codes With Good Finite Length Performance. Quantum 5, 585, arXiv:1904.02703 [quant-ph].
  • Panteleev, P. and Kalachev, G. (Jun 2022). Asymptotically Good Quantum and Locally Testable Classical LDPC Codes. In: Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing (ACM, Rome Italy); pp. 375–388.
  • Pryadko, L. P.; Shabashov, V. A. and Kozin, V. K. (2023). QDistRnd: A GAP package for computing the distance of quantum error-correcting codes, arXiv preprint arXiv:2308.15140.
  • Raaphorst, S. (2003). Reed-muller codes. Carleton University, May 9.
  • Raveendran, N.; Rengaswamy, N.; Rozpędek, F.; Raina, A.; Jiang, L. and Vasić, B. (2022). Finite Rate QLDPC-GKP Coding Scheme That Surpasses the CSS Hamming Bound. Quantum 6, 767.
  • Reed, I. S. (1954). A class of multiple-error-correcting codes and the decoding scheme. IEEE Transactions on Information Theory 4, 38–49.
  • Roffe, J.; Cohen, L. Z.; Quintavalle, A. O.; Chandra, D. and Campbell, E. T. (2023). Bias-Tailored Quantum LDPC Codes. Quantum 7, 1005.
  • Sabo, E. (2022). Trellis Decoding And Applications For Quantum Error Correction. Ph.D. Thesis, Georgia Tech.
  • Steane, A. M. (1999). Quantum reed-muller codes. IEEE Transactions on Information Theory 45, 1701–1703.
  • Steane, A. M. (2007). A tutorial on quantum error correction. In: PROCEEDINGS-INTERNATIONAL SCHOOL OF PHYSICS ENRICO FERMI, Vol. 162 (IOS Press; Ohmsha; 1999); p. 1.
  • Van Den Berg, E. (2021). A simple method for sampling random Clifford operators. In: 2021 IEEE International Conference on Quantum Computing and Engineering (QCE) (IEEE); pp. 54–59.
  • Vardy, A. (1997). The intractability of computing the minimum distance of a code. IEEE Transactions on Information Theory 43, 1757–1766.
  • Voss, L.; Xian, S. J.; Haug, T. and Bharti, K. (2024). Multivariate Bicycle Codes, arXiv:2406.19151 [quant-ph].
  • Wang, M. and Mueller, F. (2024). Coprime Bivariate Bicycle Codes and their Properties, arXiv preprint arXiv:2408.10001.
  • Wang, R.; Lin, H.-K. and Pryadko, L. P. (2023). Abelian and non-Abelian quantum two-block codes. In: 2023 12th International Symposium on Topics in Coding (ISTC) (IEEE); pp. 1–5.
  • White, G. and Grassl, M. (2006). A new minimum weight algorithm for additive codes. In: 2006 IEEE International Symposium on Information Theory (IEEE); pp. 1119–1123.
  • Wilde, M. M. (2009). Logical operators of quantum codes. Physical Review A 79, 062322.
  • Yu, S.; Bierbrauer, J.; Dong, Y.; Chen, Q. and Oh, C. H. (2013). All the Stabilizer Codes of Distance 3. IEEE Transactions on Information Theory 59, 5179–5185.